

EMEpy

Table of Contents

	EMEPy Complete User Library
	Mode

	EME

	Models

	ModeSolver

	Geometry

	Monitors

	Neural Network Acceleration

	Tools

	EMEPy Examples
	Structures

	Tutorials

EMEpy is an open-source eigenmode expansion solver implemented in Python.

Key Features

	Free and open-source

	Easy to use, great for educators

	Computationally enhancing, great for designers

	Complete design capabilities in Python

Eigenmode Expansion

Eigenmode Expansion (EME) is a method of simulating light through optical structures that operates in the frequency domain. The algorithm works by utilizing some useful properties of light. First, light exists as a superposition of eigenmodes that satisfy Maxwell’s equations inside the structure. The eigenmodes are composed of a field pattern and an eigenvalue, $beta$ proportional to the effective index of refraction of the structure. As these eigenmodes propagate through a structure that changes shape or material along the direction of propagation, the effective index and field patterns change. However, if the structure does not change in this direction, the eigenmodes remain the same except for the phase. Along these structures, the phase changes according to $e^{jbeta z}$ where z is the distance travelled.

The EME algorithm utilizes this property by taking geometric structures and representing them as a series of continuous structures in the direction of propagation. This way, each section of the geometry can contain an set of eigenmodes and phase changes. At each intersection between sections, the power of the input eigenmodes transfer into the power of the output eigenmodes. However, unless the to sets of modes are identical, reflection can also occur.

To calculate the proportion of power that transmits and reflects from any given mode to another, the overlap is calculated and a system of equations is solved. Together, the intersection mode overlap and phase propagation are cascaded and provide a set of s-parameters for the device. EMEpy can be used to calculate these values and produce s-parameters for users’ geometry.

Installation

EMEpy can be found on pip.

pip install emepy

For the latest version, the source code can be found on GitHub [https://github.com/BYUCamachoLab/emepy]. Clone the directory onto your local desktop with:

git clone --depth 1 git@github.com:BYUCamachoLab/emepy.git

Then install from within the repo:

pip install -e .

To install the neural network models:

Read these instructions [https://github.com/BYUCamachoLab/emepy/blob/main/emepy/models/README.md]

EMEPy Complete User Library

Mode

	
class emepy.mode.Mode(x: Optional[ndarray] = None, y: Optional[ndarray] = None, wl: Optional[float] = None, neff: Optional[float] = None, Hx: Optional[ndarray] = None, Hy: Optional[ndarray] = None, Hz: Optional[ndarray] = None, Ex: Optional[ndarray] = None, Ey: Optional[ndarray] = None, Ez: Optional[ndarray] = None, n: Optional[ndarray] = None)

	Object that holds the field profiles and effective index for a 2D eigenmode

	
__init__(x: Optional[ndarray] = None, y: Optional[ndarray] = None, wl: Optional[float] = None, neff: Optional[float] = None, Hx: Optional[ndarray] = None, Hy: Optional[ndarray] = None, Hz: Optional[ndarray] = None, Ex: Optional[ndarray] = None, Ey: Optional[ndarray] = None, Ez: Optional[ndarray] = None, n: Optional[ndarray] = None) → None

	Constructor for Mode Object

	Parameters

	
	x ((ndarray float)) – array of grid points in x direction (propogation in z)

	y ((ndarray float)) – array of grid points in y direction (propogation in z)

	wl ((float)) – wavelength (meters)

	neff ((float)) – effective index

	Hx ((ndarray float)) – Hx field profile

	Hy ((ndarray float)) – Hy field profile

	Hz ((ndarray float)) – Hz field profile

	Ex ((ndarray float)) – Ex field profile

	Ey ((ndarray float)) – Ey field profile

	Ez ((ndarray float)) – Ez field profile

	n ((ndarray float)) – refractive index profile

	
TE_polarization_fraction()

	Returns the fraction of power in the TE polarization

	
TM_polarization_fraction()

	Returns the fraction of power in the TE polarization

	
effective_area()

	Returns the effective area of the mode

	
effective_area_ratio()

	Returns the ratio of the effective area to the cross-sectional area

	
get_confined_power(num_pixels: Optional[int] = None) → float

	Takes in a mode and returns the percentage of power confined in the core

	Parameters

	num_pixels (int) – number of pixels outside of the core to expand the mask to capture power just outside the core (mask dilation)

	Returns

	Percentage of confined power

	Return type

	float

	
overlap(m2: EigenMode)

	Returns the overlap of the mode with another mode

	
plot(operation: str = 'Real', colorbar: bool = True, normalize: bool = True) → None

	Plots the fields in the mode using pyplot. Should call plt.figure() before and plt.show() or plt.savefig() after

	Parameters

	
	operation (string or function) – the operation to perform on the fields from (“Real”, “Imaginary”, “Abs”, “Abs^2”) (default:”Real”) or a function such as np.abs

	colorbar (bool) – if true, will show a colorbar for each field

	normalize (bool) – if true, will normalize biggest field to 1

	
plot_material() → None

	Plots the index of refraction profile

	
plot_power() → None

	Plots the power profile

	
spurious_value()

	Returns the spurious value of the mode

	
zero_phase() → None

	Changes the phase such that the z components are all imaginary and the xy components are all real.

EME

	
class emepy.eme.EME(layers: list = [], num_periods: int = 1, mesh_z: int = 200, parallel: bool = False, quiet: bool = False, **kwargs)

	The EME class is the heart of the package. It provides the algorithm that cascades sections modes together to provide the s-parameters for a geometric structure. The object is dependent on the Layer objects that are fed inside.

	
__init__(layers: list = [], num_periods: int = 1, mesh_z: int = 200, parallel: bool = False, quiet: bool = False, **kwargs) → None

	EME class constructor

	Parameters

	
	layers (list [Layer]) – An list of Layer objects, arranged in the order they belong geometrically. (default: [])

	num_periods (int) – Number of periods if defining a periodic structure (default: 1)

	mesh_z (int) – Number of mesh points in z per period for default monitors (default: 200)

	parallel (bool) – If true, will allocate parallelized processes for solving modes, propagating layers, and filling monitors with field data (default: False)

	quiet (bool) – If true, will not print current state and status of the solver (default: False)

	
add_layer(layer: Layer) → None

	The add_layer method will add a Layer object to the EME object. The object will be geometrically added to the very right side of the structure. Using this method after propagate is useless as the solver has already been called.

	Parameters

	layer (Layer) – Layer object to be appended to the list of Layers inside the EME object.

	
add_layers(*layers) → None

	Calls add layers for the layers provided

	
add_monitor(axes: str = 'xz', sources: list = [], mesh_z: Optional[int] = None, z_range: Optional[tuple] = None, location: Optional[float] = None, components: Optional[list] = None, exempt: bool = True) → Monitor

	Creates a monitor associated with the eme object BEFORE the simulation is ran

	Parameters

	
	axes (str) – the spacial axes to capture fields in. Options : ‘xz’ (default), ‘xy’, ‘xz’, ‘xyz’, ‘x’, ‘y’, ‘z’. Currently only ‘xz’ is implemented. Note, propagation is always in z.

	sources (list[Source]) – the user can specify custom mode sources to use for this monitor (default: input left)

	mesh_z (int) – number of mesh points in z (for periodic structures, will be z * num_periods), warning: if different than global value for EME, a separate run will have to take place for this monitor (default: EME global defined)

	z_range (tuple) – tuple or list of the form (start, end) representing the range of the z values to extract

	location (float) – z coordinate where to save data for a ‘xy’ monitor

	components (list[string]) – a list of the field components to include. Unless the user is worried about memory, this is best left alone. (Default: [“Ex”, “Ey”, “Ez”, “Hx”, “Hy”, “Hz”, “n”])

	exempt (bool) – flag used for very specific case when using PML for MSEMpy. The user never has to change this value.

	Returns

	the newly created Monitor object

	Return type

	Monitor

	
am_master() → bool

	Returns true for the master process if the user is running a parallel process using mpi. This is essential for I/O

	
batch_gather(data, root=0, limit=1073741824)

	Gathers data to all workers in a batched manner that will not exceed the MPI integer limit

	
batch_scatter(data, root=0, limit=1073741824)

	Scatters data to all workers in a batched manner that will not exceed the MPI integer limit

	
build_network() → None

	Builds the full network from the cascaded layers. This is the third step in the solving process.

	
draw(z_range: Optional[tuple] = None, mesh_z: int = 200, plot_sources: bool = True, plot_xy_sources=True) → AxesImage

	The draw method sketches a rough approximation for the xz geometry of the structure using pyplot where x is the width of the structure and z is the length. This will change in the future.

	Parameters

	
	z_range (tuple) – tuple or list of the form (start, end) representing the range of the z values to extract

	mesh_z (int) – the number of mesh points in z to calculate index profiles for

	Returns

	the image used to plot the index profile

	Return type

	matplotlib.image.AxesImage

	
field_propagate(left_coeffs: list, right_coeffs: list) → None

	Propagates the modes through the device to calculate the field profile everywhere

	Parameters

	
	left_coeffs (list) – A list of floats that represent the mode coefficients for the left side of the full geometry

	right_coeffs (list) – A list of floats that represent the mode coefficients for the right side of the full geometry

	
get_sources() → dict

	Returns a dictionary of each period and the Source objects that can be found inside each

	
propagate(left_coeffs: Optional[list] = None, right_coeffs: list = []) → Model

	The propagate method should be called once all Layer objects have been added. This method will call the EME solver and produce s-parameters. The defulat

	Parameters

	
	left_coeffs (list) – A list of floats that represent the mode coefficients for the left side of the full geometry. The default is determined on whether or not any custom mode sources or right_coeffs are defined. If they are, (default:[]) else (default”[1])

	right_coeffs (list) – A list of floats that represent the mode coefficients for the right side of the full geometry. (default:[])

	Returns

	The simphony model that represents the entire device

	Return type

	simphony.models.Model

	
propagate_layers() → None

	Propagates each layer with the next by creating interface models and cascading all in parallel. This is the second step for the solver

	
reset(full_reset: bool = True, parallel: bool = False, configure_parallel: bool = True) → None

	Clears out the layers and s params so the user can reuse the object in memory on a new geometry

	Parameters

	
	full_reset (boolean) – If true, will reset everything inside of the object and allow for reinstancing without memory issues (default: True)

	parallel (boolean) – If configure_parallel is True, after reset this method will set the value of parallel. Similar to the constructor (default: False)

	configure_parallel (boolean) – If configure_parallel is True, after reset this method will set the value of parallel. Similar to the constructor (default: True)

	
s_parameters(freqs=None) → ndarray

	Returns the s_parameters if they exist. If they don’t exist yet, propagate() will be called first.

	Returns

	The s_params acquired during propagation

	Return type

	numpy array

	
solve_modes() → None

	Solves for the modes in the system and is the first step in the solver’s process all in parallel

	
class emepy.lumerical.LumEME(layers=[], num_periods=1)

	This class is a wrapper for EME, it performs the same operations but uses Lumerical MODE to solve for the modes at the interfaces

	
__init__(layers=[], num_periods=1)

	EME class constructor

	Parameters

	
	layers (list [Layer]) – An list of Layer objects, arranged in the order they belong geometrically. (default: [])

	num_periods (int) – Number of periods if defining a periodic structure (default: 1)

	mesh_z (int) – Number of mesh points in z per period for default monitors (default: 200)

	parallel (bool) – If true, will allocate parallelized processes for solving modes, propagating layers, and filling monitors with field data (default: False)

	quiet (bool) – If true, will not print current state and status of the solver (default: False)

Models

	
class emepy.models.Layer(mode_solver: ModeSolver, num_modes: int, wavelength: float, length: float)

	Layer objects form the building blocks inside of an EME or PeriodicEME. These represent geometric layers of rectangular waveguides that approximate continuous structures.

	
__init__(mode_solver: ModeSolver, num_modes: int, wavelength: float, length: float) → None

	Layer class constructor

	Parameters

	
	mode_solver (Modesolver) – ModeSolver object used to solve for the modes

	num_modes (int) – Number of total modes for the layer.

	wavelength (number) – Wavelength of eigenmode to solve for (m).

	length (number) – Geometric length of the Layer (m). The length affects the phase of the eigenmodes inside the layer via the complex phasor $e^(jβz)$.

	
activate_layer(sources: list = [], start: float = 0.0, period_length: float = 0.0, compute_modes=True) → dict

	Solves for the modes in the layer and creates an ActivatedLayer object

	Parameters

	
	sources (list[Source]) – the Sources used to indicate where periodic layers are needed

	start (number) – the starting z value

	periodic_length (number) – the length of a single period

	Returns

	a dictionary that maps the period number to the activated layers. If there is no source in a period, it will be None instead at that index

	Return type

	dict

	
clear() → ndarray

	Empties the modes in the ModeSolver to clear memory

	Returns

	the edited image

	Return type

	numpy array

	
get_activated_layer(sources: list = [], start: float = 0.0) → dict

	Gets the activated layer if it exists or calls activate_layer first

	Parameters

	sources (list[Source]) – a list of Source objects for this layer

	Returns

	a dictionary that maps the period number to the activated layers. If there is no source in a period, it will be None instead at that index

	Return type

	dict

ModeSolver

	
class emepy.fd.ModeSolver(**kwargs)

	The ModeSolver object is the heart of finding eigenmodes for use in eigenmode expansion or simple examination. This parent class should be inherited and used as a wrapper for certain modules such as EMpy, Lumerical, Pickled data, Neural Networks, etc.

	
__init__(**kwargs) → None

	ModeSolver class constructor

	
clear() → None

	Clears the modesolver’s eigenmodes to make memory

	
get_mode(mode_num: int) → EigenMode

	Must extract the mode of choice

	Parameters

	mode_num (int) – index of the mode of choice

	
solve() → None

	Solves the eigenmode solver for the specific eigenmodes of desire

	
class emepy.lumerical.MSLumerical(wl=1.55e-06, width=5e-07, thickness=2.2e-07, num_modes=1, cladding_width=5e-06, cladding_thickness=5e-06, core_index=None, cladding_index=None, mesh=300, mode=None, eme_modes=False, polygons=[], PML=False, **kwargs)

	Outdated Lumerical Modesolver. Uses the lumapi Lumerical API. See Modesolver. Parameterizes the cross section as a rectangular waveguide.

	
__init__(wl=1.55e-06, width=5e-07, thickness=2.2e-07, num_modes=1, cladding_width=5e-06, cladding_thickness=5e-06, core_index=None, cladding_index=None, mesh=300, mode=None, eme_modes=False, polygons=[], PML=False, **kwargs)

	MSLumerical class constructor

	Parameters

	
	wl (number) – wavelength of the eigenmodes

	width (number) – width of the core in the cross section

	thickness (number) – thickness of the core in the cross section

	num_modes (int) – number of modes to solve for (default:1)

	cladding_width (number) – width of the cladding in the cross section (default:5e-6)

	cladding_thickness (number) – thickness of the cladding in the cross section (default:5e-6)

	core_index (number) – refractive index of the core (default:Si)

	cladding_index (number) – refractive index of the cladding (default:SiO2)

	mesh (int) – number of mesh points in each direction (xy)

	mode (lumapi.MODE) – MODE object that contains the file information

	eme_modes (boolean) – if true, will utilize the lumerical eme wrapped fde solver which is not normalized to one. Produces slightly different results purely due to roundoff error during normalization.

	PML (boolean) – if true, will enable PML boundary conditions, note: this will increase the mesh and grid space

	
clear()

	Clears the modesolver’s eigenmodes to make memory

	
get_mode(mode_num=0)

	Get the indexed mode number

	Parameters

	mode_num (int) – index of the mode of choice

	Returns

	the eigenmode of index mode_num

	Return type

	Mode

	
solve()

	Solves for the eigenmodes

	
class emepy.fd.MSEMpy(wl: float = 1.55, width: Optional[float] = None, thickness: Optional[float] = None, num_modes: int = 1, cladding_width: float = 2.5, cladding_thickness: float = 2.5, core_index: Optional[float] = None, cladding_index: Optional[float] = None, x: Optional[ndarray] = None, y: Optional[ndarray] = None, mesh: int = 128, accuracy: float = 1e-08, boundary: str = '0000', epsfunc: Optional[Callable[[ndarray, ndarray], ndarray]] = None, n: Optional[ndarray] = None, PML: bool = False, subpixel: bool = True, center: tuple = (0, 0), **kwargs)

	Electromagnetic Python Modesolver. Uses the EMpy library See Modesolver. Parameterizes the cross section as a rectangular waveguide.

	
__init__(wl: float = 1.55, width: Optional[float] = None, thickness: Optional[float] = None, num_modes: int = 1, cladding_width: float = 2.5, cladding_thickness: float = 2.5, core_index: Optional[float] = None, cladding_index: Optional[float] = None, x: Optional[ndarray] = None, y: Optional[ndarray] = None, mesh: int = 128, accuracy: float = 1e-08, boundary: str = '0000', epsfunc: Optional[Callable[[ndarray, ndarray], ndarray]] = None, n: Optional[ndarray] = None, PML: bool = False, subpixel: bool = True, center: tuple = (0, 0), **kwargs) → None

	MSEMpy class constructor

	Parameters

	
	wl (number) – wavelength of the eigenmodes

	width (number) – width of the core in the cross section

	thickness (number) – thickness of the core in the cross section

	num_modes (int) – number of modes to solve for (default:1)

	cladding_width (number) – width of the cladding in the cross section (default:5)

	cladding_thickness (number) – thickness of the cladding in the cross section (default:5)

	core_index (number) – refractive index of the core (default:Si)

	cladding_index (number) – refractive index of the cladding (default:SiO2)

	mesh (int) – number of mesh points in each direction (xy)

	x (numpy array) – the cross section grid in the x direction (z propagation) (default:None)

	y (numpy array) – the cross section grid in the y direction (z propagation) (default:None)

	mesh – the number of mesh points in each xy direction

	accuracy (number) – the minimum accuracy of the finite difference solution (default:1e-8)

	boundary (string) – the boundaries according to the EMpy library (default:”0000”)

	epsfunc (function) – the function which defines the permittivity based on a grid (see EMpy library) (default:”0000”)

	n (numpy array) – 2D profile of the refractive index

	PML (bool) – if True, will use PML boundaries. Only works for Tidy3D, not EMpy. Default : False, PEC

	subpixel (bool) – if true, will use subpixel smoothing, assuming asking for a waveguide cross section and not providing an index map (recommended)

	
clear() → ModeSolver

	Clears the modesolver’s eigenmodes to make memory

	
get_mode(mode_num: int = 0) → EigenMode

	Get the indexed mode number

	Parameters

	mode_num (int) – index of the mode of choice

	Returns

	the eigenmode of index mode_num

	Return type

	Mode

	
plot_material() → None

	Plots the index of refraction profile

	
solve() → ModeSolver

	Solves for the eigenmodes

Geometry

EMEPy now offers geometry abstractions that allow users to more easily implement the layers needed for their system. This is currently under development and subject to changing. Check out emepy.geometry.py for more examples available for users.

	
class emepy.geometries.Geometry(layers: list)

	Geoemtries are not required for users, however they do allow for easier creation of complex structures

	
__init__(layers: list) → None

	Constructors should take in parameters from the user and build the layers

	
class emepy.geometries.Waveguide(params: ~emepy.geometries.Params = <emepy.geometries.EMpyGeometryParameters object>, width: float = 0.5, thickness: float = 0.22, length: float = 1, num_modes: int = 1, center: tuple = (0, 0))

	Block forms the simplest geometry in emepy, a single layer with a single waveguide defined

	
__init__(params: ~emepy.geometries.Params = <emepy.geometries.EMpyGeometryParameters object>, width: float = 0.5, thickness: float = 0.22, length: float = 1, num_modes: int = 1, center: tuple = (0, 0)) → None

	Creates an instance of block which can be called to access the required layers for solving

	Parameters

	
	params (Params) – Geometry Parameters object containing large scale parameters

	width (number) – width of the core in the cross section

	thickness (number) – thickness of the core in the cross section

	length (number) – length of the structure

	num_modes (int) – number of modes to solve for (default:1)

Monitors

	
class emepy.monitors.Monitor(axes: str = 'xz', dimensions: tuple = (1, 1), components: list = ['E'], z_range: Optional[tuple] = None, grid_x: Optional[array] = None, grid_y: Optional[array] = None, grid_z: Optional[array] = None, location: Optional[float] = None, sources: list = [], adjoint_n: bool = True, total_length: float = 0.0)

	Monitor objects store fields during propagation for user visualization. Three types of monitors exist: 3D, 2D, and 1D.

	
__init__(axes: str = 'xz', dimensions: tuple = (1, 1), components: list = ['E'], z_range: Optional[tuple] = None, grid_x: Optional[array] = None, grid_y: Optional[array] = None, grid_z: Optional[array] = None, location: Optional[float] = None, sources: list = [], adjoint_n: bool = True, total_length: float = 0.0) → None

	Monitor class constructor0

	Parameters

	
	axes (string) – the spacial axes to capture fields in. Options : ‘xz’ (default), ‘xy’, ‘yz’, ‘xyz’, ‘x’, ‘y’, ‘z’. Note, propagation is always in z. (default: “xy”)

	dimensions (tuple) – the spacial dimensions of the resulting field (default: (1,1))

	components (list) – list of the field components to store from (‘E’,’H’,’Ex’,’Ey’,’Ez’,’Hx’,’Hy’,’Hz) (default: [“E”])

	z_range (tuple) – tuple or list of the form (start, end) representing the range of the z values to extract (default: None)

	grid_x (numpy array (default: None)) – 1d x grid

	grid_y (numpy array (default: None)) – 1d y grid

	grid_z (numpy array (default: None)) – 1d z grid

	location (float) – the location in z if the monitor represents “xy” axes (default: None)

	sources (list[Source]) – sources to use for the monitor (default:[])

	adjoint_n (bool) – if true will use the “continuous” n used for adjoint

	
get_array(component: str = 'Hy', axes: Optional[str] = None, location: Optional[float] = None, z_range: Optional[tuple] = None, grid_x: Optional[array] = None, grid_y: Optional[array] = None) → ndarray

	Creates a matplotlib axis displaying the provides field component

	Parameters

	
	component (str) – field component from “[‘Ex’,’Ey’,’Ez’,’Hx’,’Hy’,’Hz’,’E’,’H’]”

	axes (str) – the spacial axes to capture fields in. Options : ‘xz’ (default), ‘xy’, ‘yz’, ‘xyz’, ‘x’, ‘y’, ‘z’. Note, propagation is always in z.

	location (float) – if taken from 3D fields, users can specify where to take their 2D slice. If axes is ‘xz’, location refers to the location in y and ‘yz’ refers to a location in x and ‘xy’ refers to a location in z

	z_range (tuple) – tuple or list of the form (start, end) representing the range of the z values to extract

	grid_x (numpy array) – custom x grid to interpolate onto

	grid_y (numpy array) – custom y grid to interpolate onto

	Returns

	the requested field

	Return type

	numpy array

	
get_source_visual(min, max) → ndarray

	Returns a mask with lines indicating where a source is

	
get_xy_monitor_visual(min, max) → ndarray

	Returns a mask with lines indicating where a source is

	
get_z_list(start: float, end: float) → list

	Finds all the points in z between start and end

	Parameters

	
	start (float) – starting point in z

	end (float) – ending point in z

	Returns

	A list of tuples that take the format (i, l) where i is the index of the z point and l is the z point for all z points in the range

	Return type

	list[tuples]

	
normalize() → None

	Normalizes the entire field to 1

	
reset_monitor() → None

	Resets the fields in the monitor

	
visualize(ax: Optional[AxesImage] = None, component: str = 'Hy', axes: Optional[str] = None, location: float = 0, z_range: Optional[tuple] = None, show_geometry: bool = True, show_sources: bool = True, show_xy_monitors: bool = False) → AxesImage

	Creates a matplotlib axis displaying the provides field component

	Parameters

	
	ax (matplotlib axis) – the axis object created when calling plt.figure() or plt.subplots(), if None (default) then the plt interface will be used

	component (string) – field component from “[‘Ex’,’Ey’,’Ez’,’Hx’,’Hy’,’Hz’,’E’,’H’]”

	axes (string) – the spacial axes to capture fields in. Options : ‘xz’ (default), ‘xy’, ‘yz’, ‘xyz’, ‘x’, ‘y’, ‘z’. Note, propagation is always in z.

	location (float) – if taken from 3D fields, users can specify where to take their 2D slice. If axes is ‘xz’, location refers to the location in y and ‘yz’ refers to a location in x and ‘xy’ refers to a location in z.

	z_range (tuple) – tuple or list of the form (start, end) representing the range of the z values to extract

	show_geometry (bool) – if true, will display the geometry faintly under the field profiles (default: True)

	show_sources (bool) – if true, will display a red line indicating where a source is (default: True)

	Returns

	the image used to plot the index profile

	Return type

	matplotlib.image.AxesImage

Neural Network Acceleration

Tools

EMEPy offers functions to the user that can be called. These are mostly important for the library backend however.

	
emepy.tools.get_epsfunc(width: float, thickness: float, cladding_width: float, cladding_thickness: float, core_index: float, cladding_index: float, compute: bool = False, profile: np.ndarray = None, nx: int = None, ny: int = None)

	Callable class for getting epsilon on a grid

	
emepy.tools.create_polygon(x: ndarray, y: ndarray, n: ndarray, detranslate: bool = True) → list

	Given a grid and a refractive index profile, will return the vertices of the polygon for importing into libraries such as Lumerical

	Parameters

	
	x ("np.ndarray") – the x grid

	y ("np.ndarray") – the y grid

	n ("np.ndarray") – the refractive index profile

	detranslate (bool) – if True, will detranslate the vertices

	Returns

	the resulting vertices

	Return type

	list[tuples]

	
emepy.tools.interp(x: ndarray, y: ndarray, x0: ndarray, y0: ndarray, f: ndarray, centered: bool) → ndarray

	Interpolate a 2D complex array.

	Parameters

	
	x ("np.ndarray") – the new x grid

	y ("np.ndarray") – the new y grid

	x0 ("np.ndarray") – the original x grid

	y0 ("np.ndarray") – the original y grid

	f ("np.ndarray") – the field to interpolate

	centered (bool) – whether or not it needs to stil be shifted

	Returns

	the interpolated field

	Return type

	np.ndarray

	
emepy.tools.interp1d(x: ndarray, x0: ndarray, f: ndarray, centered: bool) → ndarray

	Interpolate a 1D complex array.

	Parameters

	
	x ("np.ndarray") – the new grid

	x0 ("np.ndarray") – the original grid

	f ("np.ndarray") – the field to interpolate

	centered (bool) – whether or not it needs to stil be shifted

	Returns

	the interpolated field

	Return type

	np.ndarray

	
emepy.tools.into_chunks(location: str, name: str, chunk_size: int = 20000000) → None

	Takes a large serialized file and breaks it up into smaller chunk files

	Parameters

	
	location (string) – the absolute or relative path of the large file

	name (string) – the name of the serialized smaller components (will have _chunk_# appended to it)

	chunk_size (int) – how big each save chunk should be

	
emepy.tools.from_chunks(location: str, name: str) → None

	Takes a directory of serialized chunks that were made using into_chunks and combines them back into a large serialized file

	Parameters

	
	location (string) – the path of the directory where the chunks are located

	name (string) – the name of the serialized file to create (make sure to include file extension if it matters)

	
emepy.tools._get_eps(xc: ndarray, yc: ndarray, epsfunc: Callable[[ndarray, ndarray], ndarray]) → tuple

	Used by compute_other_fields and adapted from the EMpy library

EMEPy Examples

Structures

	waveguide [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/waveguide.ipynb]

	taper [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/taper.ipynb]

	bragg grating [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/bragg_grating.ipynb]

	directional coupler [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/directional_coupler.ipynb]

	mmi [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/mmi.ipynb]

	adiabatic taper [https://github.com/BYUCamachoLab/emepy/tree/main/examples/geometry_notebooks/adiabatic_taper.ipynb]

Tutorials

	eigenmode solver [https://github.com/BYUCamachoLab/emepy/tree/main/examples/tutorials/eigenmode_solver.ipynb]

	Lumerical with EMEPy [https://github.com/BYUCamachoLab/emepy/tree/main/examples/tutorials/lumerical.ipynb]

	monitors [https://github.com/BYUCamachoLab/emepy/tree/main/examples/tutorials/monitors.ipynb]

	serialize fields [https://github.com/BYUCamachoLab/emepy/tree/main/examples/tutorials/serialize_fields.ipynb]

Index

 _
 | A
 | B
 | C
 | D
 | E
 | F
 | G
 | I
 | L
 | M
 | N
 | O
 | P
 | R
 | S
 | T
 | V
 | W
 | Z

_

 	
 	__init__() (emepy.eme.EME method)

 	(emepy.fd.ModeSolver method)

 	(emepy.fd.MSEMpy method)

 	(emepy.geometries.Geometry method)

 	(emepy.geometries.Waveguide method)

 	(emepy.lumerical.LumEME method)

 	(emepy.lumerical.MSLumerical method)

 	(emepy.mode.Mode method)

 	(emepy.models.Layer method)

 	(emepy.monitors.Monitor method)

 	
 	_get_eps() (in module emepy.tools)

A

 	
 	activate_layer() (emepy.models.Layer method)

 	add_layer() (emepy.eme.EME method)

 	
 	add_layers() (emepy.eme.EME method)

 	add_monitor() (emepy.eme.EME method)

 	am_master() (emepy.eme.EME method)

B

 	
 	batch_gather() (emepy.eme.EME method)

 	
 	batch_scatter() (emepy.eme.EME method)

 	build_network() (emepy.eme.EME method)

C

 	
 	clear() (emepy.fd.ModeSolver method)

 	(emepy.fd.MSEMpy method)

 	(emepy.lumerical.MSLumerical method)

 	(emepy.models.Layer method)

 	
 	create_polygon() (in module emepy.tools)

D

 	
 	draw() (emepy.eme.EME method)

E

 	
 	effective_area() (emepy.mode.Mode method)

 	
 	effective_area_ratio() (emepy.mode.Mode method)

 	EME (class in emepy.eme)

F

 	
 	field_propagate() (emepy.eme.EME method)

 	
 	from_chunks() (in module emepy.tools)

G

 	
 	Geometry (class in emepy.geometries)

 	get_activated_layer() (emepy.models.Layer method)

 	get_array() (emepy.monitors.Monitor method)

 	get_confined_power() (emepy.mode.Mode method)

 	get_epsfunc() (in module emepy.tools)

 	get_mode() (emepy.fd.ModeSolver method)

 	(emepy.fd.MSEMpy method)

 	(emepy.lumerical.MSLumerical method)

 	
 	get_source_visual() (emepy.monitors.Monitor method)

 	get_sources() (emepy.eme.EME method)

 	get_xy_monitor_visual() (emepy.monitors.Monitor method)

 	get_z_list() (emepy.monitors.Monitor method)

I

 	
 	interp() (in module emepy.tools)

 	
 	interp1d() (in module emepy.tools)

 	into_chunks() (in module emepy.tools)

L

 	
 	Layer (class in emepy.models)

 	
 	LumEME (class in emepy.lumerical)

M

 	
 	Mode (class in emepy.mode)

 	ModeSolver (class in emepy.fd)

 	
 	Monitor (class in emepy.monitors)

 	MSEMpy (class in emepy.fd)

 	MSLumerical (class in emepy.lumerical)

N

 	
 	normalize() (emepy.monitors.Monitor method)

O

 	
 	overlap() (emepy.mode.Mode method)

P

 	
 	plot() (emepy.mode.Mode method)

 	plot_material() (emepy.fd.MSEMpy method)

 	(emepy.mode.Mode method)

 	
 	plot_power() (emepy.mode.Mode method)

 	propagate() (emepy.eme.EME method)

 	propagate_layers() (emepy.eme.EME method)

R

 	
 	reset() (emepy.eme.EME method)

 	
 	reset_monitor() (emepy.monitors.Monitor method)

S

 	
 	s_parameters() (emepy.eme.EME method)

 	solve() (emepy.fd.ModeSolver method)

 	(emepy.fd.MSEMpy method)

 	(emepy.lumerical.MSLumerical method)

 	
 	solve_modes() (emepy.eme.EME method)

 	spurious_value() (emepy.mode.Mode method)

T

 	
 	TE_polarization_fraction() (emepy.mode.Mode method)

 	
 	TM_polarization_fraction() (emepy.mode.Mode method)

V

 	
 	visualize() (emepy.monitors.Monitor method)

W

 	
 	Waveguide (class in emepy.geometries)

Z

 	
 	zero_phase() (emepy.mode.Mode method)

Example: Bragg Grating

This example shows the capabilities of the EME object by designing a Bragg Grating. We begin by importing the similar classes and libraries as the last example. The script for this example can be found here [https://github.com/BYUCamachoLab/emepy/blob/master/examples/taper.py]

import emepy
from emepy.fd import MSEMpy
from emepy.eme import Layer, EME
from emepy.mode import Mode

import numpy as np
from matplotlib import pyplot as plt

Next we’ll define parameters for our device. In this example, we will sweep over a set of wavelengths and visualize the transfer function.

num_periods = 10 # Number of Periods for Bragg Grating
length = 0.16 # Length of each segment of BG, Period = Length * 2
num_wavelengths = 50 # Number of wavelengths to sweep
wl_lower = 1.5 # Lower wavelength bound
wl_upper = 1.6 # Upper wavelength bound
num_modes = 1 # Number of Modes
mesh = 256
modesolver = MSEMpy

This example utilizes the ability to calculate transmission values from the resulting s-matrix. Because EMEpy operates only in the frequency domain, we will run a simulation for each wavelength we care about. Let’s begin by creating an array to hold our transmission values.

t = []

We will now sweep over our set of wavelengths and create modesolvers and layers for both steps of the bragg grating period.

for wavelength in np.linspace(wl_lower, wl_upper, num_wavelengths):

 mode_solver1 = modesolver(
 wavelength * 1e-6,
 0.46e-6,
 0.22e-6,
 mesh=mesh,
 num_modes=num_modes,
) # First half of bragg grating

 mode_solver2 = modesolver(
 wavelength * 1e-6,
 0.54e-6,
 0.22e-6,
 mesh=mesh,
 num_modes=num_modes,
) # Second half of bragg grating

 layer1 = Layer(mode_solver1, num_modes, wavelength * 1e-6, length * 1e-6) # First half of bragg grating
 layer2 = Layer(mode_solver2, num_modes, wavelength * 1e-6, length * 1e-6) # Second half of bragg grating

Still in our loop, we will create a EME object and assign a number of periods. The solver will utilize this by only solving for the modes of one period, and will cascade the resulting s-parameters together a number of times matching the period count.

 eme = EME([layer1, layer2], num_periods)

Let’s draw our structure just once and make sure we designed it correctly.

 if wavelength == wl_lower:
 eme.draw()

Finally, let’s propagate our results and grab the absolute value of the transmission value and append to our list.

 eme.propagate() # propagate at given wavelength

 t.append(np.abs((eme.s_parameters())[0, 0, num_modes]) ** 2) # Grab the transmission coefficient

Once the solver finishes for each wavelength of concern, we can plot our transfer function.

plt.plot(np.linspace(wl_lower, wl_upper, num_wavelengths), 20 * np.log(t))
plt.title("BG Bode Plot Periods=" + str(num_periods))
plt.xlabel("Wavelength (microns)")
plt.ylabel("dB")
plt.show()

Eigenmode Field Profiles

Navigate here [https://github.com/BYUCamachoLab/emepy/blob/master/examples/eigenmode_solver.py] for the example script with explanations.

Example: Taper

A tapered structure between two waveguides can be easy to simulate using EMEpy. The script for this example can be found here [https://github.com/BYUCamachoLab/emepy/blob/master/examples/taper.py].

Begin by importing the EMEpy library and our modesolver.

import emepy
from emepy.fd import MSEMpy

modesolver = MSEMpy # Choose a modesolver object that will calculate the 2D field profile

We’re going to simulate with a cross section mesh density of 256. Better results can be found with higher densities at the cost of a more expensive simulation. In addition, we’ll perform the simulation with two modes to keep it simple.

mesh = 256
num_modes = 2

Let’s go ahead and define the values for our dimensions. We’ll define a larger waveguide that tapers into a smaller waveguide.

width1 = 0.6e-6 # Width of left waveguide
thickness1 = 0.4e-6 # Thickness of left waveguide
width2 = 0.5e-6 # Width of right waveguide
thickness2 = 0.3e-6 # Thickness of right waveguide

Eigenmode expansion operates in the frequency domain, so we need to define a specific frequency each time we run a simulation. For this example, let’s only concern ourselves with a single wavelength.

wavelength = 1.55e-6

Our final values to define involve our taper. We’ll define a universal length to use for the taper and each waveguide of the simulation. Note, the length does not add to the simulation time at all for eigenmode expansion, so this value can be as big as we want.

length = 10e-6 # Length of the waveguides
taper_density = 10 # How many divisions in the taper where eigenmodes will be calculated
taper_length = 2e-6 # The length of the taper

wg_length = 0.5 * (length - taper_length) # Length of each division in the taper

Lets import the rest of our classes as well as some other libraries to help us design our taper and see our results. We’ll use numpy for some operations and plot our results using pylab.

from emepy.eme import Layer, EME
from emepy.mode import Mode

import numpy as np
import pylab

We need to define an EME object. Our options are EME and PeriodicEME. Because we don’t have any periodic structures such as a grating, we will use the default EME object.

eme = EME()

It’s time to define our first section of our structure. This is the input waveguide connected to the taper. Because this structure is continuous in our direction of propagation, we only need to define a single modesolver object, and a single layer object to contain it.

mode1 = modesolver(
 wl=wavelength,
 width=width1,
 thickness=thickness1,
 mesh=mesh,
 num_modes=num_modes,
)
straight1 = Layer(mode1, num_modes, wavelength, wg_length)
eme.add_layer(straight1)

We can visualize a rough approximation of our geometry.

eme.draw()

[image: _images/taper1.png]

The next piece of our structure is the taper itself. We defined a taper_density to represent the number of discrete steps for our taper approximation. The higher this value, the more accurately our model represents a continuous taper. However, higher densities require more calls to our modesolver, which is the bulk of our computational expense. Let’s create arrays to represent the widths and thicknesses of each discrete step of the taper, and also the length of each step. If our density is 0, we have a step between the waveguides with no taper between.

widths = np.linspace(width1, width2, taper_density)
thicknesses = np.linspace(thickness1, thickness2, taper_density)
taper_length_per = taper_length / taper_density if taper_density else None

Let’s create a modesolver and layer for each step of the taper and add them to our eme object.

for i in range(taper_density):
 solver = modesolver(wl=wavelength, width=widths[i], thickness=thicknesses[i], mesh=mesh, num_modes=num_modes)
 taper_layer = Layer(solver, num_modes, wavelength, taper_length_per)
 eme.add_layer(taper_layer)

Again let’s see what our geometry looks like now with our taper.

eme.draw()

[image: _images/taper2.png]

Finally we create another waveguide section just like before.

mode2 = modesolver(wl=wavelength, width=width2, thickness=thickness2, mesh=mesh, num_modes=num_modes)
straight2 = Layer(mode2, num_modes, wavelength, wg_length)
eme.add_layer(straight2)

Let’s take a look at our final geometry.

eme.draw()

[image: _images/taper3.png]

We’re happy with our design, so now it’s time to let the eme solver propagate. This will call our modesolver objects and solve for the modes, calculate mode overlaps at each interfact, and cascade the results together.

eme.propagate()

Finally we can visualize the s parameters. Let’s look at the absolute value which will tell us the power transmission and reflection per mode input.

print(np.abs(eme.s_parameters()))

We can also look at the phase to know the output phase of each mode.

print(np.angle(eme.s_parameters()))

We can use this to examine the results of specified inputs. For example, if we were to send in one mode on the left of our structure, we can see both the output phase and which output modes contain all the power.

result = np.matmul(eme.s_parameters(),np.array([1,0,0,0]))

print(np.abs(result))
print(np.angle(result))

EMEpy Complete User Library

Tools

def get_epsfunc(
 width,
 thickness,
 cladding_width,
 cladding_thickness,
 core_index,
 cladding_index
)

	width [number] The width of the cross sectional core (m).

	thickness [number] The thickness of the cross sectional core (m).

	cladding_width [number] The width of the cross sectional cladding (m).

	cladding_thickness [number] The thickness of the cross sectional cladding (m).

	core_index [number] Index of refraction of the cross sectional core.

	cladding_index [number] Index of refraction of the cross sectional cladding.

The get_epsfunc function takes in a geometry and index of refraction for core and cladding of a simple rectangular waveguide and outputs another function. This new function can be used to extract the cross sectional square of the index of refraction for a given x,y space. This is only necessary for the EMpy modesolver, which is handled in the backend. Therefore users do not need to use this function, but can if they wish.

Example

from emepy.tools import get_epsfunc
from matplotlib import pyplot as plt
import numpy as np

index_func = get_epsfunc(
 width = .5e-6,
 thickness = .22e-6,
 cladding_width = 5e-6,
 cladding_thickness = 5e-6,
 core_index = np.sqrt(3.5),
 cladding_index = np.sqrt(1.4)
)

x = np.linspace(0, 5e-6, 128)
y = np.linspace(0, 5e-6, 128)

index = index_func(x,y)

plt.imshow(np.real(index),extent=[0, 5, 0, 5])
plt.colorbar()
plt.xlabel('x (um)')
plt.ylabel('y (um)')
plt.title('index')
plt.show()

[image: old_docs/old/images/eps_func.png]

def Si(wavelength)

	wavelength [number] The wavelength of light propagating through silicon (µm).

The Si function provides an index of refraction in silicon given a specific wavelength. The function uses a regression on a dataset and is thus only valid for a range of wavelengths: (1.2µm - 14µm).

Example

from emepy.tools import Si
import numpy as np

lambdas = np.linspace(1.5,1.6,10)
index_array = [Si(i) for i in lambdas]

print(index_array)

Output

[3.4799, 3.478966666666667, 3.4780333333333333, 3.4771, 3.4761666666666664, 3.4752777777777775, 3.4744333333333333, 3.473588888888889, 3.4727444444444444, 3.4719]

def SiO2(wavelength)

	wavelength [number] The wavelength of light propagating through silicon dioxide (glass) (µm).

The SiO2 function provides an index of refraction in silicon given a specific wavelength. The function uses a regression on a dataset and is thus only valid for a range of wavelengths: (0.21µm - 6.7µm).

Example

from emepy.tools import SiO2
import numpy as np

lambdas = np.linspace(1.5,1.6,10)
index_array = [SiO2(i) for i in lambdas]

print(index_array)

Output

[1.4446167941939, 1.4444864184114001, 1.4443539800979162, 1.444221362433912, 1.4440887447699078, 1.4439561271059036, 1.4438231150141243, 1.4436878678316192, 1.4435526206491143, 1.4434173734666091]

Mode

class Mode(object):

Mode is a class that contains the information for an eigenmode. It stores Ex, Ey, Ez, Hx, Hy, Hz, and neff (the effective index).

def __init__(
 self,
 x,
 y,
 wl,
 neff,
 Hx,
 Hy,
 Hz,
 Ex,
 Ey,
 Ez
)

	x [list [numbers]] List of positions in the x direction.

	y [list [numbers]] List of positions in the y direction.

	wl [number] Wavelength of eigenmode to solve for (m).

	neff [number] Effective index of the eigenmode.

	Hx [ndarray] len(x) x len(y) matrix representing the Hx field.

	Hy [ndarray] len(x) x len(y) matrix representing the Hy field.

	Hz [ndarray] len(x) x len(y) matrix representing the Hz field.

	Ex [ndarray] len(x) x len(y) matrix representing the Ex field.

	Ey [ndarray] len(x) x len(y) matrix representing the Ey field.

	Ez [ndarray] len(x) x len(y) matrix representing the Ez field.

Methods

def plot(self, value_type="Real", colorbar=True):

	value_type [string] Operation of field to look at. Options: ‘Real’, ‘Imaginary’, ‘Abs’, ‘Abs^2’. [default: ‘Real’]

	colorbar [bool] If True, includes a colorbar on each subplot. [default: True]

Plots all 6 fields into subplots with pyplot.

def inner_product(self, mode2):

	mode2 [Mode] A second mode to overlap with.

Takes the inner product (overlap) with another mode. If both fields are normalized to power 1, then an overlap of 1 means perfect overlap and an overlap of 0 means no overlap.

def normalize(self):

Normalizes the Mode to power 1.

def zero_phase(self):

Changes the phase such that the z components are all imaginary and the xy components are all real.

def get_fields(self):

Returns an array [self.Hx, self.Hy, self.Hz, self.Ex, self.Ey, self.Ez].

def get_H(self):

Returns an array [self.Hx, self.Hy, self.Hz].

def get_E(self):

Returns an array [self.Ex, self.Ey, self.Ez].

def get_neff(self):

Returns the effective index as a complex number.

def get_wavelength(self):

Returns the wavelength.

def save(self, path=None):

	path [string] The path (including name) to save the file. [default: “./ModeObject_” + str(random.random())]

Saves the Mode object into a pickled file. Can be reloaded using the ModeSolver_Pickle class.

Example

ModeSolvers

class ModeSolver_EMpy(object):

ModeSolver_EMpy is based on the electromagnetic python module. It’s open-source and fairly easy to use. This is the recommended class for users who want to use a finite difference solver.

def __init__(
 self,
 wl,
 width,
 thickness,
 num_modes=1,
 cladding_width=2.5e-6,
 cladding_thickness=2.5e-6,
 core_index=None,
 cladding_index=None,
 x=None,
 y=None,
 mesh=300,
 accuracy=1e-8,
 boundary="0000",
 epsfunc=None,
)

	wl [number] Wavelength of eigenmode to solve for (m).

	width [number] Width of the core in the rectangular cross section (m).

	thickness [number] Thickness of the core in the rectangular cross section (m).

	num_modes [int] Number of modes to solve for. [default: 1]

	cladding_width [number] Width of the cladding in the rectangular cross section (m). [default: 2.5e-6]

	cladding_thickness [number] Thickness of the cladding in the rectangular cross section (m). [default: 2.5e-6]

	core_index [number] Index of refraction of the cross sectional core. [default: Si(wl*1e6)]

	cladding_index [number] Index of refraction of the cross sectional cladding. [default: SiO2(wl*1e6)]

	x [list [numbers]] List of positions in the x direction. [default: np.linspace(0,cladding_width,mesh)]

	y [list [numbers]] List of positions in the y direction. [default: np.linspace(0,cladding_thickess,mesh)]

	mesh [int] If provided, provides an equally spaced x,y grid with mesh number of points. [default: 300]

	accuracy [number] Accuracy of the EMpy solver, smaller accuracy is more accurate. [default: 1e-8]

	boundary [string] EMpy boundary type “NESW”. Users should only change if they’ve read the EMpy documentation for boundaries. [default: “0000”]

	epsfunc [function] Function that provides a mapping of the index of refraction based on a given grid. See get_epsfunc. [default: get_epsfunc(width, thickness, cladding_width, cladding_thickness, core_index, cladding_index)]

Methods

def solve(self):

Calls the ModeSolver to actually solve for the modes.

def clear(self):

Clear the modes inside the ModeSolver to open memory.

def get_mode(self, mode_num=0):

Get the nth order Mode given by mode_num.

	mode_num [int] The index of the nth order Mode to get.

Example

from emepy.FD_modesolvers import ModeSolver_EMpy
from emepy.mode import Mode
from matplotlib import pyplot as plt

modesolver = ModeSolver_EMpy(
 wl=1.55e-6,
 width=.5e-6,
 thickness=.22e-6,
 mesh = 128
)

modesolver.solve()
mode = modesolver.get_mode()

plt.figure()
mode.plot()
plt.show()

[image: old_docs/old/images/plot_mode.png]

class ModeSolver_Lumerical(object):

ModeSolver_Lumerical requires the Lumerical API. Licensing for such is not free. Therefore users are encouraged to use the other classes which work just as well.

def __init__(
 self,
 wl,
 width,
 thickness,
 num_modes=1,
 cladding_width=5e-6,
 cladding_thickness=5e-6,
 core_index=None,
 cladding_index=None,
 mesh=300,
 lumapi_location=None,
)

	wl [number] Wavelength of eigenmode to solve for (m).

	width [number] Width of the core in the rectangular cross section (m).

	thickness [number] Thickness of the core in the rectangular cross section (m).

	num_modes [int] Number of modes to solve for. [default: 1]

	cladding_width [number] Width of the cladding in the rectangular cross section (m). [default: 2.5e-6]

	cladding_thickness [number] Thickness of the cladding in the rectangular cross section (m). [default: 2.5e-6]

	core_index [number] Index of refraction of the cross sectional core. [default: Si(wl*1e6)]

	cladding_index [number] Index of refraction of the cross sectional cladding. [default: SiO2(wl*1e6)]

	mesh [int] If provided, provides an equally spaced x,y grid with mesh number of points. [default: 300]

	lumapi_location [string] If the Lumerical Python API is not already in the user’s path, they may add the path here. [default: None]. Ubuntu example: “/opt/lumerical/v202/api/python” .

Methods

def solve(self):

Calls the ModeSolver to actually solve for the modes.

def clear(self):

Clear the modes inside the ModeSolver to open memory.

def get_mode(self, mode_num=0):

Get the nth order Mode given by mode_num.

	mode_num [int] The index of the nth order Mode to get.

Example

from emepy.FD_modesolvers import ModeSolver_Lumerical
from emepy.mode import Mode
from matplotlib import pyplot as plt

modesolver = ModeSolver_Lumerical(
 wl=1.55e-6,
 width=.5e-6,
 thickness=.22e-6,
 mesh = 128,
 lumapi_location = "/opt/lumerical/v202/api/python"
)

modesolver.solve()
mode = modesolver.get_mode()

plt.figure()
mode.plot(value_type="abs^2", colorbar=False)
plt.show()

[image: old_docs/old/images/plot_lumapi.png]

class ModeSolver_Pickle(object):

ModeSolver_Pickle simply uses the pickle library to open files with presaved field profiles and effective indices. This requires no mode solving during the EME process, however requires saved fields beforehand.

def __init__(
 self,
 filename,
 index=None,
 width=None,
 thickness=None
)

	filename [string] Location of where the pickled file is located.

	index [int] If the pickle file has an list of Modes saved as opposed to the default singular Mode saved, provide an index of the list for which Mode the user wants.

	width [number] Width of the core in the rectangular cross section (m). Only used for drawing EME geometry. Optional.

	thickness [number] Thickness of the core in the rectangular cross section (m). Only used for drawing EME geometry. Optional.

Methods

def solve(self):

Calls the ModeSolver to actually solve for the modes.

def clear(self):

Clear the modes inside the ModeSolver to open memory.

def get_mode(self, mode_num=0):

Get the nth order Mode given by mode_num.

	mode_num [int] The index of the nth order Mode to get.

Example

from emepy.FD_modesolvers import ModeSolver_EMpy
from emepy.FD_modesolvers import ModeSolver_Pickle
from emepy.mode import Mode
from matplotlib import pyplot as plt
import pickle as pk

modesolver = ModeSolver_EMpy(wl=1.55e-6, width=0.5e-6, thickness=0.22e-6, mesh=128)
modesolver.solve()
mode = modesolver.get_mode()
pk.dump(mode, open("./example_file.pk", "wb+"))

Separate instance

modesolver = ModeSolver_Pickle(filename="./example_file.pk", width=0.5e-6, thickness=0.22e-6)

modesolver.solve()
mode = modesolver.get_mode()

plt.figure()
mode.plot(value_type="Imaginary")
plt.show()

[image: old_docs/old/images/plot_pickle.png]

class ModeSolver_ANN(object):

ModeSolver_ANN is an example class for what users may design if they chose to use neural networks to generate modes. This is computationally the fasted of the solvers themselves, but requires a pretrained network. **Currently being finished, users should use the other ModeSolvers for now. **

def __init__(
 self,
 wavelength,
 width,
 thickness,
 sklearn_save,
 torch_save_x,
 torch_save_y,
 num_modes=1,
 cladding_width=5e-6,
 cladding_thickness=5e-6,
 x=None,
 y=None,
)

	wl [number] Wavelength of eigenmode to solve for (m).

	width [number] Width of the core in the rectangular cross section (m).

	thickness [number] Thickness of the core in the rectangular cross section (m).

	sklearn_save [string] Sklearn save location for the effective index polynomial regression. [default: ?]

	torch_save_x [string] Pytorch save location for the Hx field neural network. [default: ?]

	torch_save_y [string] Pytorch save location for the HY field neural network. [default: ?]

	num_modes [int] Number of modes to solve for. (Don’t change for this specific set of networks.) [default: 1]

	cladding_width [number] Width of the cladding in the rectangular cross section (m). (Don’t change for this specific set of networks.) [default: 2.5e-6]

	cladding_thickness [number] Thickness of the cladding in the rectangular cross section (m). (Don’t change for this specific set of networks.) [default: 2.5e-6]

	x [list [numbers]] List of positions in the x direction. [default: np.linspace(0,cladding_width,mesh)]

	y [list [numbers]] List of positions in the y direction. [default: np.linspace(0,cladding_thickess,mesh)]

Methods

def solve(self):

Calls the ModeSolver to actually solve for the modes.

def clear(self):

Clear the modes inside the ModeSolver to open memory.

def get_mode(self, mode_num=0):

Get the nth order Mode given by mode_num.

	mode_num [int] The index of the nth order Mode to get.

Example

EME Simulation

class EME(object):

The EME class is the heart of the package. It provides the algorithm that cascades sections modes together to provide the s-parameters for a geometric structure. The object is dependent on the Layer objects that are fed inside.

def __init__(
 self,
 layers=[],
 keep_modeset=False
)

	layers [list [Layer]] An list of Layer objects, arranged in the order they belong geometrically. [default: []]

	keep_modeset [bool] If true, will keep the first and last layers’ modes in the system after the simulation is complete. This is utilized by the PeriodicEME object. It can also be used by users who wish to examine the first of last modes after the simulation is complete, but usually this is kept false. [default: False].

Methods

def add_layer(self, layer):

The add_layer method will add a Layer object to the EME object. The object will be geometrically added to the very right side of the structure. Using this method after propagate is useless as the solver has already been called.

	layer [Layer] Layer object to be appended to the list of Layers inside the EME object.

def propagate(self):

The propagate method should be called once all Layer objects have been added. This method will call the EME solver and produce s-parameters.

def s_parameters(self):

The s_parameters method returns an MxN numpy array of s-parameters where each index representing the transmission/reflection from mode N to mode M. M = Number of output modes on the right + Number of output modes on the left. M = Number of input modes on the right + Number of input modes on the left. For each, the order of modes as they correspond to the port number are the left modes from most fundamental to least, and then the right modes.

def draw(self):

The draw method sketches a rough approximation for the xz geometry of the structure using pyplot where x is the width of the structure and z is the length.

Example

class PeriodicEME(object):

The PeriodicEME class works similarly to the EME class. Users specificy the number of periods of repeated geometry and the solving process will significatnly decrease in time when compared to running a full simulation using EME.

def __init__(
 self,
 layers=[],
 num_periods=1
)

	layers [list [Layer]] An list of Layer objects, arranged in the order they belong geometrically. [default: []]

	num_periods [int] Number of periods in the repeated geometry. If num_periods == 1, PeriodicEME becomes the same as EME. [default: 1]

Methods

def add_layer(self, layer):

The add_layer method will add a Layer object to the EME object. The object will be geometrically added to the very right side of the structure. Using this method after propagate is useless as the solver has already been called.

	layer [Layer] Layer object to be appended to the list of Layers inside the EME object.

def propagate(self):

The propagate method should be called once all Layer objects have been added. This method will call the EME solver and produce s-parameters.

def s_parameters(self):

The s_parameters method returns an MxN numpy array of s-parameters where each index representing the transmission/reflection from mode N to mode M. M = Number of output modes on the right + Number of output modes on the left. M = Number of input modes on the right + Number of input modes on the left. For each, the order of modes as they correspond to the port number are the left modes from most fundamental to least, and then the right modes.

def draw(self):

The draw method sketches a rough approximation for the xz geometry of the structure using pyplot where x is the width of the structure and z is the length.

Example

class Layer(object):

Layer objects form the building blocks inside of an EME or PeriodicEME. These represent geometric layers of rectangular waveguides that approximate continuous structures.

def __init__(
 self,
 mode_solvers,
 num_modes,
 wavelength,
 length
)

	mode_solvers [list [Modesolver] or Modesolver] List of Modesolver objects. Should be in order from fundamental mode to least significant mode. If singular Modesolver, can leave alone without a list.

	num_modes [int] Number of total modes for the layer.

	wavelength [number] Wavelength of eigenmode to solve for (m).

	length [number] Geometric length of the Layer (m). The length affects the phase of the eigenmodes inside the layer via the complex phasor $e^(jβz)$.

Example

 nav.xhtml

 Table of Contents

 		
 EMEpy

 		
 EMEPy Complete User Library

 		
 Mode

 		
 Mode

 		
 EME

 		
 EME

 		
 LumEME

 		
 Models

 		
 Layer

 		
 ModeSolver

 		
 ModeSolver

 		
 MSLumerical

 		
 MSEMpy

 		
 Geometry

 		
 Geometry

 		
 Waveguide

 		
 Monitors

 		
 Monitor

 		
 Neural Network Acceleration

 		
 Tools

 		
 get_epsfunc()

 		
 create_polygon()

 		
 interp()

 		
 interp1d()

 		
 into_chunks()

 		
 from_chunks()

 		
 _get_eps()

 		
 EMEPy Examples

 		
 Structures

 		
 Tutorials

_static/file.png

_static/minus.png

_static/plus.png

_images/taper1.png
le-7

0.0000000 0.0000005 0.0000010 0.0000015 0.0000020 0.0000025 0.0000030 0.0000035 0.0000040

_images/taper2.png
le-7

0.000000 0.000001 0.000002 0.000003 0.000004 0.000005 0.000006

_images/taper3.png
le-7

0.000000

0.000002

0.000004

0.000006

0.000008

0.000010

